Below is a clean, step-by-step explanation you can follow (plus a sample script in Python).


1. Understand Your Data

Before writing any code, check:

  • What format is the data? (CSV, JSON, TXT, HTML, Excel…)
  • What problems exist?
    • Missing values
    • Duplicates
    • Wrong data types
    • Extra spaces or symbols
    • Irrelevant columns
    • Inconsistent formatting (e.g., “Yes”/”YES”/”Y” )

2. Choose a Tool or Language

Most common:

  • Python (best for automation)
  • R
  • Excel PowerQuery
  • JavaScript (if working with web data)

Below we use Python + Pandas because it’s simple and powerful.


3. Write a Basic Script Structure

📌 Example: Python Script to Parse & Clean CSV Data

import pandas as pd

# 1. Load the data
df = pd.read_csv("raw_data.csv")  # use read_json(), read_excel() if needed

# 2. Remove duplicate rows
df = df.drop_duplicates()

# 3. Handle missing values
df = df.fillna({
    "name": "Unknown",
    "age": 0,
    "email": "no-email@example.com"
})

# 4. Clean text fields (strip spaces, lowercase)
df["name"] = df["name"].str.strip().str.title()
df["email"] = df["email"].str.strip().str.lower()

# 5. Convert data types
df["age"] = df["age"].astype(int)

# 6. Remove unwanted columns
df = df.drop(columns=["temp", "unused_column"])

# 7. Save the cleaned data
df.to_csv("cleaned_data.csv", index=False)

print("Data cleaning complete!")

4. Automation (Optional But Powerful)

You can automate the script to run:

  • Daily
  • Weekly
  • Whenever new data arrives

Leave a Reply

Your email address will not be published. Required fields are marked *