Below is a clean, step-by-step explanation you can follow (plus a sample script in Python).
✅ 1. Understand Your Data
Before writing any code, check:
- What format is the data? (CSV, JSON, TXT, HTML, Excel…)
- What problems exist?
- Missing values
- Duplicates
- Wrong data types
- Extra spaces or symbols
- Irrelevant columns
- Inconsistent formatting (e.g., “Yes”/”YES”/”Y” )
✅ 2. Choose a Tool or Language
Most common:
- Python (best for automation)
- R
- Excel PowerQuery
- JavaScript (if working with web data)
Below we use Python + Pandas because it’s simple and powerful.
✅ 3. Write a Basic Script Structure
📌 Example: Python Script to Parse & Clean CSV Data
import pandas as pd
# 1. Load the data
df = pd.read_csv("raw_data.csv") # use read_json(), read_excel() if needed
# 2. Remove duplicate rows
df = df.drop_duplicates()
# 3. Handle missing values
df = df.fillna({
"name": "Unknown",
"age": 0,
"email": "no-email@example.com"
})
# 4. Clean text fields (strip spaces, lowercase)
df["name"] = df["name"].str.strip().str.title()
df["email"] = df["email"].str.strip().str.lower()
# 5. Convert data types
df["age"] = df["age"].astype(int)
# 6. Remove unwanted columns
df = df.drop(columns=["temp", "unused_column"])
# 7. Save the cleaned data
df.to_csv("cleaned_data.csv", index=False)
print("Data cleaning complete!")
✅ 4. Automation (Optional But Powerful)
You can automate the script to run:
- Daily
- Weekly
- Whenever new data arrives
